18 research outputs found

    Automation of a problem list using natural language processing

    Get PDF
    BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information

    Indexing Thoracic CT Reports Using a Preliminary Version of a Standardized Radiological Lexicon (RadLex)

    No full text
    Introduction: To validate a preliminary version of a radiological lexicon (RadLex) against terms found in thoracic CT reports and to index report content in RadLex term categories. Material and Methods: Terms from a random sample of 200 thoracic CT reports were extracted using a text processor and matched against RadLex. Report content was manually indexed by two radiologists in consensus in term categories of Anatomic Location, Finding, Modifier, Relationship, Image Quality, and Uncertainty. Descriptive statistics were used and differences between age groups and report types were tested for significance using Kruskal–Wallis and Mann–Whitney Test (significance level <0.05). Results: From 363 terms extracted, 304 (84%) were found and 59 (16%) were not found in RadLex. Report indexing showed a mean of 16.2 encoded items per report and 3.2 Finding per report. Term categories most frequently encoded were Modifier (1,030 of 3,244, 31.8%), Anatomic Location (813, 25.1%), Relationship (702, 21.6%) and Finding (638, 19.7%). Frequency of indexed items per report was higher in older age groups, but no significant difference was found between first study and follow up study reports. Frequency of distinct findings per report increased with patient age (p < 0.05). Conclusion: RadLex already covers most terms present in thoracic CT reports based on a small sample analysis from one institution. Applications for report encoding need to be developed to validate the lexicon against a larger sample of reports and address the issue of automatic relationship encoding
    corecore